Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Infect Dis ; 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38041851

RESUMEN

Bone and joint infections (BJIs) are difficult to treat and affect a growing number of patients, in which relapses are observed in 10-20% of the case. These relapses, which call for prolonged antibiotic treatment and increase resistance emergence risk, may originate from ill understood adaptation of the pathogen to the host. Here, we investigated three pairs of Escherichia coli strains from BJI cases and their relapses to unravel in-patient adaptation. Whole genome comparison presented evidence for positive selection and phenotypic characterization showed that biofilm formation remained unchanged, contrary to what is usually described in such cases. Although virulence was not modified, we identified the loss of two virulence factors contributing to immune system evasion in one of the studied strains. Other strategies, including global growth optimization and colicin production, likely allowed the strains to outcompete competitors. This work highlights the variety of strategies allowing in-patient adaptation in BJIs.

2.
Nanoscale ; 15(44): 18015-18032, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37916389

RESUMEN

LipoParticles, core-shell assemblies consisting of a polymer core coated by a lipid membrane, are promising carriers for drug delivery applications with intracellular targets. This is of great interest since it is actually challenging to treat infections involving intracellular bacteria such as bone and joint infections where the bacteria are hidden in osteoblast cells. The present work reports for the first time to the best of our knowledge the proof of enhanced internalization of particles in osteoblast cells thanks to a lipid coating of particles (= LipoParticles). The ca. 300 nm-sized assemblies were elaborated by reorganization of liposomes (composed of DPPC/DPTAP 10/90 mol/mol) onto the surface of poly(lactic-co-glycolic acid) (PLGA) particles, and were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), and zetametry. Optimization of these assemblies was also performed by adding poly(ethylene glycol) (PEG) chains on their surface (corresponding to a final formulation of DPPC/DPTAP/DPPE-PEG5000 8/90/2 mol/mol/mol). Interestingly, this provided them colloidal stability after their 20-fold dilution in PBS or cell culture medium, and made possible their freeze-drying without forming aggregates after their re-hydration. Their non-cytotoxicity towards a human osteoblast cell line (MG63) was also demonstrated. The enhanced internalization of LipoParticles in this MG63 cell line, in comparison with PLGA particles, was proven by observations with a confocal laser scanning microscope, as well as by flow cytometry assays. Finally, this efficient internalization of LipoParticles in MG63 cells was confirmed by TEM on ultrathin sections, which also revealed localization close to intracellular Staphylococcus aureus.


Asunto(s)
Nanopartículas , Polímeros , Humanos , Polímeros/farmacología , Polietilenglicoles , Liposomas , Osteoblastos , Lípidos , Portadores de Fármacos
3.
Microbiol Spectr ; 10(6): e0421522, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36409142

RESUMEN

The clone Staphylococcus capitis NRCS-A is responsible for late-onset sepsis in neonatal intensive care units (NICUs) worldwide. Over time, this clone has evolved into three subgroups that are increasingly adapted to the NICU environment. This study aimed to decipher the mechanisms involved in NRCS-A persistence in NICUs. Twenty-six S. capitis strains belonging to each of the three NRCS-A clone subgroups and two other non-NRCS-A groups from neonates (alpha clone) or from adult patients ("other strains") were compared based on growth kinetics and ability to form biofilm as well as tolerance to desiccation and to different disinfectants. S. capitis biofilm formation was enhanced in rich medium and decreased under conditions of nutrient stress for all strains. However, under conditions of nutrient stress, NRCS-A strains presented an enhanced ability to adhere and form a thin biofilm containing more viable and culturable bacteria (mean 5.7 log10 CFU) than the strains from alpha clone (mean, 1.1 log10 CFU) and the "other strains" (mean, 4.2 log10 CFU) (P < 0.0001). The biofilm is composed of bacterial aggregates with a matrix mainly composed of polysaccharides. The NRCS-A clone also showed better persistence after a 48-h desiccation. However, disinfectant tolerance was not enhanced in the NRCS-A clone in comparison with that of strains from adult patients. In conclusion, the ability to form biofilm under nutrient stress and to survive desiccation are two major advantages for clone NRCS-A that could explain its ability to persist and settle in the specific environment of NICU settings. IMPORTANCE Neonatal intensive care units (NICUs) host extremely fragile newborns, including preterm neonates. These patients are very susceptible to nosocomial infections, with coagulase-negative staphylococci being the species most frequently involved. In particular, a Staphylococcus capitis clone named NRCS-A has emerged worldwide specifically in NICUs and is responsible for severe nosocomial sepsis in preterm neonates. This clone is specifically adapted to the NICU environment and is able to colonize and maintain on NICU surfaces. The present work explored the mechanisms involved in the persistence of the NRCS-A clone in the NICU environment despite strict hygiene measures. The ability to produce biofilm under nutritional stress and to resist desiccation appear to be the two main advantages of NRCS-A in comparison with other strains. These findings are pivotal to provide clues for subsequent development of targeted methods to combat NRCS-A and to stop its dissemination.


Asunto(s)
Desinfectantes , Sepsis , Infecciones Estafilocócicas , Staphylococcus capitis , Adulto , Recién Nacido , Humanos , Antibacterianos/uso terapéutico , Infecciones Estafilocócicas/microbiología , Unidades de Cuidado Intensivo Neonatal , Desinfectantes/farmacología , Desecación , Sepsis/microbiología
4.
Nat Commun ; 13(1): 7174, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36418309

RESUMEN

Staphylococcus aureus is increasingly recognized as a facultative intracellular pathogen, although the significance and pervasiveness of its intracellular lifestyle remain controversial. Here, we applied fluorescence microscopy-based infection assays and automated image analysis to profile the interaction of 191 S. aureus isolates from patients with bone/joint infections, bacteremia, and infective endocarditis, with four host cell types, at five times post-infection. This multiparametric analysis revealed that almost all isolates are internalized and that a large fraction replicate and persist within host cells, presenting distinct infection profiles in non-professional vs. professional phagocytes. Phenotypic clustering highlighted interesting sub-groups, including one comprising isolates exhibiting high intracellular replication and inducing delayed host death in vitro and in vivo. These isolates are deficient for the cysteine protease staphopain A. This study establishes S. aureus intracellular lifestyle as a prevalent feature of infection, with potential implications for the effective treatment of staphylococcal infections.


Asunto(s)
Bacteriemia , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus , Microscopía , Estilo de Vida
5.
Nat Commun ; 13(1): 6995, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36384856

RESUMEN

Transcriptional cofactors YAP/TAZ have recently been found to support autophagy and inflammation, which are part of cell-autonomous immunity and are critical in antibacterial defense. Here, we studied the role of YAP against Staphylococcus aureus using CRISPR/Cas9-mutated HEK293 cells and a primary cell-based organoid model. We found that S. aureus infection increases YAP transcriptional activity, which is required to reduce intracellular S. aureus replication. A 770-gene targeted transcriptomic analysis revealed that YAP upregulates genes involved in autophagy/lysosome and inflammation pathways in both infected and uninfected conditions. The YAP-TEAD transcriptional activity promotes autophagic flux and lysosomal acidification, which are then important for defense against intracellular S. aureus. Furthermore, the staphylococcal toxin C3 exoenzyme EDIN-B was found effective in preventing YAP-mediated cell-autonomous immune response. This study provides key insights on the anti-S. aureus activity of YAP, which could be conserved for defense against other intracellular bacteria.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Humanos , Staphylococcus aureus/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transactivadores/metabolismo , Células HEK293 , Proteínas Señalizadoras YAP , Inmunidad Celular , Inflamación
6.
Arthroplasty ; 4(1): 41, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36068617

RESUMEN

Prosthetic joint infection (PJI) is one of the most devastating complications of orthopedic surgery. However, not all patients are equally at the risk of severe infection. The incidences of PJI vary with the host and surgery-related risk factors. It is now generally accepted that some important medical comorbidities may predispose the patients to a high risk of PJI. Time-consuming and invasive surgical procedures, such as revision arthroplasties, are also associated with a high incidence of PJI, presumably due to the increased risk of surgical site contamination. Effective infection-preventing strategies should begin with identifying and optimizing the patients at a high risk of infection prior to surgery. Optimizing the operating room environment and antibiotic prophylaxis are also essential strategies that help minimize the overall incidence of infection in orthopedic surgery. The ideal antibiotic prophylaxis is still under debate, and discussions have emerged about whether variations or adjustments to the standard protocol are justified in patients at a high risk of infection. This also includes evaluating the possible benefits and risks of using high-dose dual antibiotic-loaded bone cement instead of low-dose single antibiotic-loaded bone cement in arthroplasty. This review summarizes the evidence showing that the combination of two local antibiotics in bone cement exerts a strong and longer-lasting antimicrobial effect against PJI-associated pathogens. This conclusion is consistent with the preliminary clinical studies showing a low incidence of PJI in high-risk patients undergoing cemented hemiarthroplasty, cemented revision, and primary arthroplasty if dual ALBC is used. These results may encourage clinicians to consolidate this hypothesis in a wider clinical range.

7.
Antimicrob Agents Chemother ; 66(8): e0058822, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35861539

RESUMEN

Staphylococcus epidermidis is one of the main pathogens responsible for bone and joint infections, especially those involving prosthetic materials, due to its ability to form biofilms. In these cases, biofilm formation, combined with increased antimicrobial resistance, often results in therapeutic failures. In this context, the development of innovative therapies active against S. epidermidis is a priority. The aim of this study was to evaluate the in vitro activity of the lysin exebacase (CF-301) against biofilms formed by 19 S. epidermidis clinical strains isolated from prosthetic joint infections (PJI). We determined the biomass and the remaining viable bacteria inside biofilms after 24 h of exposure to exebacase. Exebacase activity was compared to that of rifampicin, vancomycin, and daptomycin. The use of exebacase in addition to antibiotics was also assessed. Exebacase displayed (i) a significant anti-biomass activity on S. epidermidis biofilms at concentrations ≥5 mg/L (mean decrease up to 66% at 150 mg/L), (ii) significant bactericidal activity on biofilms at concentrations ≥50 mg/L (mean decrease up to 1.7 log CFU at 150 mg/L), (iii) synergistic effects when used in addition to rifampicin, vancomycin, or daptomycin. The extent of these activities varied by isolate. Exebacase can be considered a promising therapy in addition to rifampicin, vancomycin, or daptomycin in the context of PJI. Further in vitro studies are needed to understand its mechanism of action on S. epidermidis biofilms and in vivo investigations are required to confirm these data.


Asunto(s)
Daptomicina , Infecciones Estafilocócicas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Biopelículas , Daptomicina/farmacología , Daptomicina/uso terapéutico , Endopeptidasas , Humanos , Pruebas de Sensibilidad Microbiana , Rifampin/farmacología , Rifampin/uso terapéutico , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Staphylococcus epidermidis , Vancomicina/farmacología , Vancomicina/uso terapéutico
8.
FEMS Microbiol Rev ; 46(6)2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-35772001

RESUMEN

The heterogeneity of bacterial growth and replicative rates within a population was proposed a century ago notably to explain the presence of bacterial persisters. The term "growth rate" at the single-cell level corresponds to the increase in size or mass of an individual bacterium while the "replicative rate" refers to its division capacity within a defined temporality. After a decades long hiatus, recent technical innovative approaches allow population growth and replicative rates heterogeneity monitoring at the single-cell level resuming in earnest. Among these techniques, the oldest and widely used is time-lapse microscopy, most recently combined with microfluidics. We also discuss recent fluorescence dilution methods informing only on replicative rates and best suited. Some new elegant single cell methods so far only sporadically used such as buoyant mass measurement and stable isotope probing have emerged. Overall, such tools are widely used to investigate and compare the growth and replicative rates of bacteria displaying drug-persistent behaviors to that of bacteria growing in specific ecological niches or collected from patients. In this review, we describe the current methods available, discussing both the type of queries these have been used to answer and the specific strengths and limitations of each method.


Asunto(s)
Microfluídica , Microscopía , Humanos , Microfluídica/métodos , Replicación del ADN , Bacterias
9.
Antibiotics (Basel) ; 11(2)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35203740

RESUMEN

Gram-negative bacilli can be responsible for prosthetic joint infection (PJI) even if staphylococci are the main involved pathogens. Gram-negative PJIs (GN-PJI) are considered difficult-to-treat infections due to the increase in antimicrobial resistance and biofilm formation. To minimize the risk of infection in cases of arthroplasties with cemented prosthesis, bone cement can be loaded with antibiotics, especially gentamicin. In this study, we aimed to compare the prophylactic antibiofilm activity of ready-to-use antibiotic-loaded bone cements (ALBC), already commercialized or new prototypes. We compared ALBCs containing gentamicin alone, gentamicin plus vancomycin, gentamicin plus clindamycin, gentamicin plus Fosfomycin, and fosfomycin alone, to plain cement (no antibiotic); these comparisons were conducted to investigate the biofilm formation of three strains of Escherichia coli, three strains of Pseudomonas aeruginosa and two strains of Klebsiella pneumoniae, with or without specific resistance to gentamicin or fosfomycin. We reported that ALBC containing gentamicin and clindamycin (COPAL G+C) seems to be the most interesting ALBC of our tested panel for the prevention of biofilm formation by gentamicin-susceptible strains, even if clindamycin is not effective against Gram-negative bacteria. However, gentamicin-resistant strains are still a problem, and further studies are needed to identify an antibiotic to associate with gentamicin for an efficient dual ALBC against Gram-negative bacteria.

10.
Clin Microbiol Infect ; 28(1): 135.e1-135.e7, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33962064

RESUMEN

OBJECTIVES: Beyond intracellular penetration, acidic lysosomal pH might affect the intracellular activity of some antimicrobials. This study evaluated the ability of lysosomotropic alkalizing agents to potentiate the antimicrobial eradication of an intra-osteoblastic Staphylococcus aureus reservoir in the setting of bone and joint infection (BJI). METHODS: MICs of 16 anti-staphylococcal molecules active against methicillin-sensitive S. aureus (MSSA) were evaluated at pH 5 and pH 7. Additionally, the lysosomal alkalizing potential (spectrofluorometry) and cytotoxicity (MTT assay) of hydroxychloroquine, amantadine and ammonium chloride were assessed. The results led to further investigation of clindamycin, cotrimoxazole, daptomycin and levofloxacin-alone or in combination with hydroxychloroquine-in an in vitro model of osteoblast infection. The impact of hydroxychloroquine on autophagy was finally investigated using Western blot detection of two autophagic flux indicators, the LC3 membrane protein and the SQSTM1 cargo protein. RESULTS: Daptomycin, cotrimoxazole, clindamycin and levofloxacin alone significantly decreased the intracellular staphylococcal reservoir (5.12 log10 CFU/100 000 cells) by 0.14 (95%CI 0.01-0.34), 0.25 (95%CI 0.12-0.43), 0.16 (95%CI 0.004-0.39) and 1.18 (95%CI 1.04-1.38) log10 CFU/100 000 cells, respectively (p < 10-3). Adding hydroxychloroquine (20 mg/L) increased intralysosomal pH from 4.8 to 7, and concomitantly the inoculum of each antimicrobial was reduced by 0.50 (95%CI 0.30-0.84), 0.73 (95%CI 0.59-0.96), 0.59 (95%CI 0.46-0.78) and 1.8 (95%CI 1.66-2.1) log10 CFU/100 000 cells, respectively (p < 10-4). Cellular levels of LC3II and SQSTM1 showed that hydroxychloroquine has direct activity on the autophagic flux, fostering the eradication of intracellular S. aureus by antimicrobials. CONCLUSION: At high concentrations, hydroxychloroquine used as an adjuvant to antimicrobials improves eradication of an S. aureus intra-osteoblastic reservoir in our in vitro cell infection model. These findings advocate further in vivo evaluation of alkalization efficacy and tolerance in S. aureus BJI.


Asunto(s)
Antibacterianos , Enfermedades Óseas Infecciosas/tratamiento farmacológico , Hidroxicloroquina , Artropatías/tratamiento farmacológico , Infecciones Estafilocócicas , Antibacterianos/farmacología , Enfermedades Óseas Infecciosas/microbiología , Clindamicina , Daptomicina/farmacología , Humanos , Hidroxicloroquina/farmacología , Artropatías/microbiología , Levofloxacino , Lisosomas , Pruebas de Sensibilidad Microbiana , Proteína Sequestosoma-1 , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus , Combinación Trimetoprim y Sulfametoxazol
11.
Viruses ; 13(12)2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34960683

RESUMEN

Phage-derived therapies comprise phage therapy and the use of phage-derived proteins as anti-bacterial therapy. Bacteriophages are natural viruses that target specific bacteria. They were proposed to be used to treat bacterial infections in the 1920s, before the discovery and widespread over-commercialized use of antibiotics. Phage therapy was totally abandoned in Western countries, whereas it is still used in Poland, Georgia and Russia. We review here the history of phage therapy by focusing on bone and joint infection, and on the development of phage therapy in France in this indication. We discuss the rationale of its use in bacterial infection and show the feasibility of phage therapy in the 2020s, based on several patients with complex bone and joint infection who recently received phages as compassionate therapy. Although the status of phage therapy remains to be clarified by health care authorities, obtaining pharmaceutical-grade therapeutic phages (i.e., following good manufacturing practice guidelines or being "GMP-like") targeting bacterial species of concern is essential. Moreover, multidisciplinary clinical expertise has to determine what could be the relevant indications to perform clinical trials. Finally "phage therapy 2.0" has to integrate the following steps: (i) follow the status of phage therapy, that is not settled and defined; (ii) develop in each country a close relationship with the national health care authority; (iii) develop industrial-academic partnerships; (iv) create academic reference centers; (v) identify relevant clinical indications; (vi) use GMP/GMP-like phages with guaranteed quality bioproduction; (vii) start as salvage therapy; (vii) combine with antibiotics and adequate surgery; and (viii) perform clinical trials, to finally (ix) demonstrate in which clinical settings phage therapy provides benefit. Phage-derived proteins such as peptidoglycan hydrolases, polysaccharide depolymerases or lysins are enzymes that also have anti-biofilm activity. In contrast to phages, their development has to follow the classical process of medicinal products. Phage therapy and phage-derived products also have a huge potential to treat biofilm-associated bacterial diseases, and this is of crucial importance in the worldwide spread of antimicrobial resistance.


Asunto(s)
Infecciones Bacterianas/terapia , Enfermedades Óseas Infecciosas/terapia , Artropatías/terapia , Terapia de Fagos , Infecciones Relacionadas con Prótesis/terapia , Proteínas Virales/uso terapéutico , Antibacterianos/uso terapéutico , Artritis Infecciosa/terapia , Bacteriófagos/enzimología , Bacteriófagos/fisiología , Ensayos de Uso Compasivo , Humanos , Osteomielitis/terapia , Terapia de Fagos/normas , Proteínas Virales/metabolismo
12.
Front Cell Infect Microbiol ; 11: 745659, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34858871

RESUMEN

Objectives: Staphylococcus aureus is one of the main causes of bacterial keratitis in humans. This study was aimed at investigating the mechanisms of S. aureus adhesion to the human corneal epithelium involved during the initial stage of infectious keratitis. Methods: Human corneas stored in a specific active storage machine that restores a normal pluristratified epithelium were used to assess S. aureus adhesion level to intact and injured tissues using immunostaining. S. aureus adhesion to immobilized fibronectin was measured in microtiter plate. Internalization of S. aureus clinical isolates recovered from keratitis was assessed on human corneal epithelial HCE-2 cells. Results: Superficial corneal injury unmasked fibronectin molecules expressed within the human corneal epithelium. S. aureus adhesion level was increased by 117-fold in the area of injured epithelium (p < 0.0001). The deletion of staphylococcal fnbA/B genes decreased by 71% the adhesion level to immobilized fibronectin (p < 0.001). The deletion of fnbA/B genes and the incubation of the corneas with anti-fibronectin blocking antibodies prior to the infection significantly reduced the S. aureus adhesion level to injured corneal epithelium (p < 0.001). Finally, S. aureus clinical isolates triggered its internalization in human corneal epithelial cells as efficiently as the 8325-4 wt. Conclusion: S. aureus was almost unable to bind the intact corneal epithelium, whereas a superficial epithelial injury of the corneal epithelium strongly increased S. aureus adhesion, which is mainly driven by the interaction between staphylococcal fibronectin-binding proteins and unmasked fibronectin molecules located underneath the most superficial layer of the corneal epithelium.


Asunto(s)
Epitelio Corneal , Queratitis , Infecciones Estafilocócicas , Proteínas Portadoras , Fibronectinas/metabolismo , Humanos , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
13.
Front Microbiol ; 12: 728429, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34526981

RESUMEN

Staphylococcus aureus is a human pathogen known for its capacity to shift between the planktonic and biofilm lifestyles. In vivo, the antimicrobial immune response is characterized by the recruitment of inflammatory phagocytes, namely polymorphonuclear neutrophils (PMNs) and monocytes/macrophages. Immune responses to planktonic bacteria have been extensively studied, but many questions remain about how biofilms can modulate inflammatory responses and cause recurrent infections in live vertebrates. Thus, the use of biologically sound experimental models is essential to study the specific immune signatures elicited by biofilms. Here, a mouse ear pinna model of infection was used to compare early innate immune responses toward S. aureus planktonic or biofilm bacteria. Flow cytometry and cytokine assays were carried out to study the inflammatory responses in infected tissues. These data were complemented with intravital confocal imaging analyses, allowing the real-time observation of the dynamic interactions between EGFP + phagocytes and bacteria in the ear pinna tissue of LysM-EGFP transgenic mice. Both bacterial forms induced an early and considerable recruitment of phagocytes in the ear tissue, associated with a predominantly pro-inflammatory cytokine profile. The inflammatory response was mostly composed of PMNs in the skin and the auricular lymph node. However, the kinetics of PMN recruitment were different between the 2 forms in the first 2 days post-infection (pi). Two hours pi, biofilm inocula recruited more PMNs than planktonic bacteria, but with decreased motility parameters and capacity to emit pseudopods. Inversely, biofilm inocula recruited less PMNs 2 days pi, but with an "over-activated" status, illustrated by an increased phagocytic activity, CD11b level of expression and ROS production. Thus, the mouse ear pinna model allowed us to reveal specific differences in the dynamics of recruitment and functional properties of phagocytes against biofilms. These differences would influence the specific adaptive immune responses to biofilms elicited in the lymphoid tissues.

14.
J Vis Exp ; (175)2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34570088

RESUMEN

Staphylococcus aureus expresses virulence factors to trigger its internalization into eukaryote cells and to survive inside different subcellular compartments. This paper describes an enzyme protection assay to study the extent of S. aureus internalization and its intracellular survival in adherent non-professional phagocytic cells (NPPCs) as well as the intracellular efficacy of antimicrobial compounds. NPPCs are grown in a multi-well plate until they reach 100% confluence. S. aureus cultures are grown overnight in cell culture medium. The bacterial suspension is diluted according to the number of cells per well to inoculate the cells at a controlled multiplicity of infection. Inoculated cells are incubated for 2 h to allow the bacteria to be internalized by the NPPCs, following which lysostaphin is added to the culture medium to selectively kill extracellular bacteria. Lysostaphin is present in the culture medium for the rest of the experiment. At this point, the infected cells could be incubated with antimicrobial compounds to assess their intracellular activities against S. aureus. Next, the cells are washed three times to remove the drugs, and intracellular S. aureus load is then quantified by culturing on agar plates. Alternatively, for studying staphylococcal virulence factors involved in intracellular survival and cell toxicity, lysostaphin could be inactivated with proteinase K to eliminate the need for washing steps. This tip improves the reliability of the intracellular bacterial load quantification, especially if cells tend to detach from the culture plate when they become heavily infected because of the multiplication of intracellular S. aureus. These protocols can be used with virtually all types of adherent NPPCs and with 3D cell culture models such as organoids.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Antibacterianos/farmacología , Bioensayo , Humanos , Reproducibilidad de los Resultados , Infecciones Estafilocócicas/tratamiento farmacológico
15.
J Antimicrob Chemother ; 76(11): 2863-2866, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34423360

RESUMEN

OBJECTIVES: Long-acting lipoglycopeptides are promising therapeutic options in Staphylococcus aureus bone and joint infections (BJIs). This study evaluated the ability of dalbavancin to eradicate the intraosteoblastic reservoir of S. aureus, associated with BJI chronicity. METHODS: Osteoblastic cells were infected with a standardized inoculum of the S. aureus reference strain HG001 and incubated for 24 h with dalbavancin, vancomycin or rifampicin using the MIC, 10×MIC, 100×MIC and/or the intraosseous concentrations reached using standard therapeutic doses (i.e. vancomycin, 10 mg/L; rifampicin, 2 mg/L; and dalbavancin, 6 mg/L). The remaining intracellular bacteria were quantified by plating cell lysates. RESULTS: MICs of dalbavancin, vancomycin and rifampicin were 0.125, 1 and 0.004 mg/L, respectively. Dalbavancin significantly reduced the intracellular inoculum of S. aureus starting at a concentration equal to the MIC, with a significant dose effect, ranging from a reduction of 31.4% (95% CI = 17.6%-45.2%) at MIC to 51.6% (95% CI = 39.8%-63.4%) at 100×MIC compared with untreated cells. Of note, dalbavancin was the only molecule to significantly reduce the intraosteoblastic inoculum at low concentration (MIC). At intraosseous concentrations, dalbavancin reduced the intracellular inoculum by 49.6% (95% CI = 45.1%-54.1%) compared with untreated cells (P < 0.001), with no significant difference compared with vancomycin (38.1%; 95% CI = 19.2%-57.0%; P = 0.646), and was less efficient than rifampicin (69.0%; 95% CI = 63.2-74.8; P < 0.001). CONCLUSIONS: Dalbavancin was able to decrease the intraosteoblastic S. aureus inoculum by 50% at intraosseous concentrations reached during standard human therapeutic dosing, with no difference compared with vancomycin, and remained less efficient than rifampicin. However, it was the only molecule significantly active at low concentration.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Humanos , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/tratamiento farmacológico , Teicoplanina/análogos & derivados , Teicoplanina/farmacología
16.
J Antimicrob Chemother ; 76(12): 3091-3102, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34459881

RESUMEN

Staphylococcus aureus - a major aetiological agent of bone and joint infection (BJI) - is associated with a high risk of relapse and chronicity, in part due to its ability to invade and persist in non-professional phagocytic bone cells such as osteoblasts. This intracellular reservoir protects S. aureus from the action of the immune system and most antibiotics. To date, the choice of antimicrobial strategies for BJI treatment mostly relies on standard susceptibility testing, bone penetration of antibiotics and their 'antibiofilm' activity. Despite the role of intracellular persistent S. aureus in the development of chronic infection, the ability of antibiotics to target the S. aureus intraosteoblastic reservoir is not considered in therapeutic choices but might represent a key determinant of treatment outcome. This review provides an overview of the intracellular pharmacokinetics of antistaphylococcal drugs used in the treatment of BJI and of their ability to target intraosteoblastic S. aureus. Thirteen studies focusing on the intraosteoblastic activity of antibiotics against S. aureus were reviewed, all relying on in vitro models of osteoblast infection. Despite varying incubation times, multiplicities of infection, bacterial strains, and the types of infected cell lines, rifamycins and fluoroquinolones remain the two most potent antimicrobial classes for intraosteoblastic S. aureus eradication, consistent with clinical data showing a superiority of this combination therapy in S. aureus orthopaedic device-related infections.


Asunto(s)
Rifamicinas , Infecciones Estafilocócicas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Humanos , Infección Persistente , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus
17.
Front Med (Lausanne) ; 8: 550853, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34055817

RESUMEN

Exebacase, a recombinantly produced lysin has recently (i) reported proof-of-concept data from a phase II study in S. aureus bacteremia and (ii) demonstrated antibiofilm activity in vitro against S. epidermidis. In patients with relapsing multidrug-resistant (MDR) S. epidermidis prosthetic knee infection (PKI), the only surgical option is prosthesis exchange. In elderly patients who have undergone several revisions, prosthesis explantation could be associated with definitive loss of function and mortality. In our BJI reference regional center, arthroscopic debridement and implant retention with local administration of exebacase (LysinDAIR) followed by suppressive tedizolid as salvage therapy is proposed for elderly patients with recurrent MDR S. epidermidis PKI with no therapeutic option or therapeutic dead end (for whom revision or transfemoral amputation is not feasible and no other oral option is available). Each use was decided in agreement with the French health authority and in accordance with the local ethics committee. A written consent was obtained for each patient. Exebacase (75 mg/mL; 30 mL) was administered directly into the joint during arthroscopy. Four patients (79-89 years old) were treated with the LysinDAIR procedure. All had several previous prosthetic knee revisions without prosthesis loosening. Three had relapsing PKI despite suppressive antibiotics following open DAIR. Two had clinical signs of septic arthritis; the two others had sinus tract. After the LysinDAIR procedure, no adverse events occurred during arthroscopy; all patients received daptomycin 8 mg/kg and linezolid 600 mg bid (4-6 weeks) as primary therapy, followed by tedizolid 200 mg/day as suppressive therapy. At 6 months, recurrence of the sinus tract occurred in the two patients with sinus tract at baseline. After >1 year follow up, the clinical outcome was favorable in the last two patients with total disappearance of clinical signs of septic arthritis even if microbiological persistence was detected in one of them. Exebacase has the potential to be used in patients with staphylococci PKI during arthroscopic DAIR as salvage therapy to improve the efficacy of suppressive antibiotics and to prevent major loss of function.

18.
World J Orthop ; 12(3): 119-128, 2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33816139

RESUMEN

In view of the demographic changes and projected increase of arthroplasty procedures worldwide, the number of prosthetic joint infection cases will naturally grow. Therefore, in order to counteract this trend more rigid rules and a stricter implementation of effective preventive strategies is of highest importance. In the absence of a "miracle weapon" priorities should lie in evidence-based measures including preoperative optimization of patients at higher infection risks, the fulfilment of strict hygiene rules in the operating theatre and an effective antibiotic prophylaxis regimen. Instead of a "one size fits all" philosophy, it has been proposed to adjust the antibiotic prophylaxis protocol to major infection risks taking into account important patient- and procedure-related risk factors. A stronger focus on the local application mode via use of high dose dual antibiotic-loaded bone cement in such risk situations may have its advantages and is easy to apply in the theatre. The more potent antimicrobial growth inhibition in vitro and the strong reduction of the prosthetic joint infection rate in risk for infection patients with aid of dual antibiotic-loaded bone cement in clinical studies align with this hypothesis.

19.
Front Med (Lausanne) ; 8: 565555, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33796542

RESUMEN

Background: In prosthetic joint infections (PJIs), identification of the causative microorganisms is critical to successfully adapt and optimize treatment. However, microbiological diagnosis of PJIs remains a challenge notably because bacteria are embedded in biofilm adhered to the prosthetic material. Recently, dithiothreitol (DTT) treatment of prosthesis has been proposed as a new strategy to release bacteria from biofilm and to improve the yield of microbiological diagnosis. In this study, we evaluated the interest of a commercial device using DTT, the MicroDTTect system (Heraeus, Hanau, Germany), for the diagnosis of low-grade chronic PJIs, compared to the conventional culture of periprosthetic tissue (PPT) samples. Methods: Twenty patients undergoing a surgery procedure for removal of prosthetic material because of a suspicion of low-grade PJI without pre-operative microbiological documentation were included (NCT04371068). Bacteriological results using the fluid obtained after prosthesis treatment with the MicroDTTect system were compared to results obtained with conventional culture of PPT samples. Results: All the bacteria considered as responsible for PJIs recovered from culture of PPT samples were also detected using the MicroDTTect device. For one patient, an additional bacterial isolate (Staphylococcus haemolyticus) suspected to be involved in a polymicrobial PJI was identified using DTT treatment. Time to positivity of the cultures was also reduced using the MicroDTTect system, notably in case of Cutibacterium acnes infection. However, probable bacterial contaminants were found (MicroDTTect system, n = 5; PPT samples, n = 1). Conclusion: This study showed that DTT treatment of the prosthetic component using the MicroDTTect device could improve the microbiological diagnosis of low-grade PJIs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...